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Abstract. In goal-directed proofs, such as those used in HOL, tactics
often must operate on one or more specific assumptions. But goals of-
ten have many assumptions. Currently there is no good way to select or
denote assumptions in HOL88. Most mechanisms are sensitive to incon-
sequential changes or are difficult to use.

Denoting assumptions by filters (matching) makes it easier to maintain
large proofs and reuse pieces. But writing the filter predicate can be
time-consuming and distracting.

We describe an aid to proof building which synthesizes filter functions
from terms. Given examples of terms which should and should not be
matched, the function creates an ML predicate which can be used, for
example, with filter or FILTER_ASM_REWRITE_TAC.

This paper reviews past discussions on denotation methods, the design
and implementation of the filter synthesizer, applicable Al classification
techniques, and possible application to more general term handling and
recognition.

1 Introduction

Proofs take a lot of time to create. To make proofs more widely applicable, the
time and expertise necessary to create a proof must be reduced. One approach is
to reuse large portions of proof scripts (tactics) in similar proofs. To be able to
reuse portions of proof scripts, minor differences in goals should require minimal
changes to the proof script.

Changes arise because the theorem to be proved changes and because the
HOL implementation changes. One area which has caused lots of possibly avoid-
able work is in denoting or choosing assumptions. Currently there is no good
way to denote or choose assumptions in HOLSS.

There are many ways to denote assumptions, but all have drawbacks.

— Denoting assumptions by their position in the assumption list is simple, but
if other tactics are used or tactic implementation changes, the position of
assumptions may change.

— Denoting assumptions by quotation works regardless of position, but fails if
the goal changes even slightly.
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— Naming assumptions, then referring to them by name is robust. However it
is not available in HOL88 and is just becoming available in HOL90.

— Denoting assumptions by filtering is insensitive to the order of assumptions
and can be insensitive to changes in variable names and details of the theorem
to be proved. However it is time-consuming and tedious to come up with
appropriate filter predicates.

In Sect. 2 we review these approaches and others which have been suggested
over the years in more detail. We compare their advantages and disadvantages.
In Sect. 3 we present the design of the proof aid and its implementation. Sec-
tion 4 presents alternative classification techniques and algorithms for construct-
ing predicates. Finally we give some examples in Sect. 5, and Sect. 6 is our con-
clusions and ideas for future work.

2 Approaches to Denoting or Selecting Assumptions

Over the years the HOL community has suggested and discussed many ap-
proaches to denoting or selecting assumptions. Here we enumerate them and
compare their strengths and weaknesses.

2.1 Denoting by Quotation

The HOL “handbook” [7] mentions the “general problem of denoting assump-
tions” and says

The only straightforward way to denote them in the existing system is
to supply their quoted text. Though adequate, this method may result
in bulky ML expressions; and it may take some effort to present the text
correctly (with necessary type information, etc.).

2.2 Denoting by Position

The book goes on to describe two other approaches: treating the assumption set
as a stack and intercepting and manipulating results without them being added
as assumptions.

The first approach uses pop operations to minimize the number of assump-
tions and denote the top assumption without explicit quotation. This is workable
if the number of assumptions is small. The generalization of this approach, de-
noting assumptions by their position in the list, is sensitive to changes in tactic
implementation or proofs.

2.3 Immediate Use

The second approach employs tacticals such as DISJ_CASES_THEN and
DISCH_THEN to use results immediately without ever making them assumptions.



Ching-Tsun Chou [5] gave a detailed explanation of theorem continuations and
their use. These techniques reduces the problem of denoting assumptions by
reducing the number of assumptions and using some results directly. However
proofs still have many assumptions at some points.

2.4 Reference by Position, Denoting by Quotation

David Shepherd [13] suggests a rather radical approach. The user refers to as-
sumptions by their position in the assumption list, and a tactic recording system
replaces the reference with a quotation of the assumption. The user then saves
a “tactic script” for future use. The HOL system would require changes. Worse
yet, when the proof is rerun after small changes, such as variable names, the
quoted assumption would not match, the tactic would fail, and the script would
require human maintenance.

Even more radical would be to have a system recording the tactics which
are used and which tactic added which assumption. One refers to assumptions
by position, and the tactic recording system modifies the step which added the
assumption so it will save the assumption for use at this point. This would require
even more extensive changes, and could be accomplished by naming (explained

in Sect. 2.6).

2.5 Saving Terms and Denoting by Quotation

Paul Curzon [6] suggested saving assumptions in ML variables during the proof,
then using them, e.g. via ASSUME, when needed. This is insensitive to changes
of position or nature of term. The variable name could serve as documentation,
too. The drawback is that some tactics don’t return the results, although Chou’s
[5] theorem continuations could be adapted to the purpose.

2.6 Denoting by Name

Sara Kalvala [10] developed an extension of HOL90 in which terms and other
structures can have labels (among other things). She also presented some spe-
cialized tactics which denote assumptions by label. Nuprl 4 allows users to label
assumptions [12], too. Labeling assumptions is probably the best approach in
the long run: proof scripts are insensitive to most changes and names can act as
documentation or hints.

2.7 Denoting by Filter Predicate

John Harrison [9] suggested using a filter predicate, such as
FIRST_ASSUM(SUBST1_TAC o assert (curry $= "x:num" o lhs o concl))
This can be done in HOL88 and is less sensitive to changes in proof scripts
than denotation by quotation or position. Jim Alves-Foss [2] pointed out that
although proofs written with filters are insensitive to many changes, they may



not be very readable. Denoting assumptions by quotation documents what as-
sumption is used at a step.

Another drawback is that it is difficult to write filter functions. If the assump-
tions to be denoted are very different from all the others, a few selectors, such
as is_abs or \t.is_comb t & rator t = $+, are sufficient. But a predicate of
any significant depth will be a confusing jumble of selectors little better than
the car’s, cdr’s, and cadddr’s sometimes seen in LISP. For example, here is a
predicate used in Uinta verification:

let machine_pred thm =
let tm = concl thm in
(((rand o fst o dest_eq o snd o dest_forall) tm)
= "Imdr(t + 1):*wordn") ? false;;

Clearly the predicate is checking for Imdr(t + 1) at some specific place in
the term, but it is not clear where. When the term changes, it will take some
work to rewrite the predicate.

3 The Predicate Synthesizer

In this section we describe a new tool which synthesizes a predicate from exam-
ples of terms. We detail the design requirements and explain the implementation.

3.1 Requirements

The tool, find_filter, takes two lists: a list of terms and a list of indices of those
terms which must be matched. Terms whose indices are not listed must not be
matched. Terms which must match are called positive examples in Artificial
Intelligence literature [14]. Terms which must no? match are called negative
examples. The synthesized function is returned as a string with full types and
can be incorporated in the proof script for later use. The type of the tool is
then find_filter: term list -> int list -> string, and the synthesized
function has the type : term -> bool.

The synthesized function should be insensitive to minor changes in the proof.
Therefore it should recognize general differences and similarities instead of spe-
cifics which are peripheral to the proof. As an example of what we don’t want,
the function \t. t = pos1 \/ t = pos2 \/ . . .\/ t = posN (where posi
through posN are the positive examples) always filters exactly (as long as no
term is both a positive and negative example), but it is verbose and sensitive to
any change in the positive terms.

The synthesized function must be fast since some proofs may filter assump-
tions hundreds or thousands of times. Therefore the function should be a series
of predicates, such as

\t.is_forall t & vname (bndvar (rand t))=‘t"‘
& is_imp (body (rand t)) ? false



The tool is acceptable even if it takes some minutes to synthesize the filter
function since the user only runs it occasionally, and then at human interaction
speeds. The synthesized function should be somewhat readable, so the user can
gauge how general the function actually is. This is not crucial since even if the
proof changes enough to invalidate the function, the new assumptions can be
added to the “training set” and the tool rerun to yield a more robust function.

3.2 Implementation Philosophy

The tool should compare the positive and negative example and synthesize not
just some function which discriminates between the two sets, but a function
which covers the most possibilities. That is, the function should continue to
discriminate correctly in the future as far as possible. We would have to be
clairvoyant to write a program which always chooses correctly, but how good
can we do in practice?

Carbonell, et. al. [3] considers this problem as learning a classification from
examples. The examples came from the external environment, that is, the exam-
ples are not specifically chosen or designed to teach the concept. Both positive
and negative examples without “noise” are available, and the resultant clas-
sification must be correct for all examples. In learning the classification, the
synthesizer should find features of terms which make up the concept “desired
terms.” The general approach we chose is to search a rule-version space [14].

Abstraction Level: One Possible Feature Set

Terms often have a general form in common, for instance, all positive example
terms may be implications while none of the negative examples are. This suggests
extracting features based on parts closest to the top, or root, of the abstract
syntax tree or parse tree of a term. Consider the term "!'x y. x < 3 /\ y > 0".
The most general recognition function of the term is \(t:term) . true; all detail
of the term has been abstracted away. Since there is no detail, we call it a level 0
abstraction; none of the parse tree of the term is used. The function which only
includes one level of detail from the top, that is the level 1 abstraction from the
top, is \t.is_forall t. It checks that the first level of the term matches, but
nothing more. The level 2 top abstraction is
\t.is_forall t & is_conj (body (rand (body (rand t)))) ? false

A rigorous description more clearer phrased as testing for a match with a
“term pattern.” A term pattern is a term which may have specially named
variables that match any (sub)term. (The special variables are named STARn
reminiscent of the Kleene Star.) The level 0 abstraction of any term is just a
STAR variable, i.e., a pattern which matches anything (the type is copied from the
term). A level n abstraction, where n > 0, is as follows. The level n abstraction
of a constant or variable is that constant or variable: an exact match. The level
n abstraction of a A-term is mk_abs of the level n — 1 abstraction of the bound
variable and the body.



The level n abstraction of a combination term is more complex. If the rator
is a binder, such as V or 3, it is the level n — 1 abstraction of the bound variable
and body of the binder’s abstraction:

mk_comb (
rator t,
mk_abs (
abstraction (n-1) (bndvar (rand t)),
abstraction (n-1) (body (rand t))

)

If the rator is not a binder, it is the combination of the level n abstraction of
the rator and the level n — 1 abstraction of the rand. That is, if an operator is
at level n, all its operands are at level n + 1.

3.3 Implementation
The filter function is synthesized in several steps.

1. Find one or more term patterns such that all positive terms are matched by
at least one pattern and the pattern do not match any negative terms.

(a) Arbitrarily choose a positive example. Find the greatest abstraction
(least level n, from Sect. 3.2 above) of it which matches all the posi-
tive examples and none of the negative examples.

(b) Slightly generalize the abstraction if possible.

(¢) If no abstraction matches all the positives and none of the negatives, find
a pattern for the first positive and a pattern for the rest of the positives
separately.

2. Convert the term pattern(s) into an ML predicate which matches the same
terms. The ML predicate is constructed as a string so it can be easily printed.

The output can then be used as a filter function in a proof.

Obviously this limited exploration of possible term patterns may fail to find a
set which works. If none of these work, find_filter ends with the message, no
filter found.

Abstractions are slightly generalized if possible. A new pattern, with some
penultimate node of the pattern tree replaced by a STAR, is formed and checked
against the negatives. If it does not match any of the negatives, it is used. For
example, suppose a term pattern is STAR2 /\ STAR3 ==> STAR3 \/ STAR4. The
new patterns formed by slightly generalizing it are STAR2 /\ STAR3 ==> STARS
and STAR6 ==> STAR3 \/ STAR4. Both of these are slightly more general than
the original pattern.

In some cases no single pattern matches all of the positives and none of the
negatives. To handle these, the positives are split into two sets, the first positive
and the rest. The code attempts to find patterns which match the first, but
not the negative, and the rest, but not the negatives. The final predicate then



checks for a match with either of these patterns. Clearly this could be enhanced
to create as many patterns as needed to match all of the positives, but none of
the negatives.

The final term pattern (or patterns) is converted to a string of appropriate
ML code. For instance, a conjunction in the pattern becomes is_conj of the
appropriate selection and (&) predicates to test both conjuncts, if needed. STARs
match anything, so no predicate is needed for them. Special characters are quoted
so the text can be incorporated directly into proof scripts. We give examples of
the synthesized functions in Sect. 5.

4 Alternative Algorithms and Classification Techniques

This section discusses some alternative algorithms and approaches we considered,
but haven’t explored. For proofs in other subjects, such as mathematics, software,
or protocols, or other styles of proofs, different selection functions may be better.
Additionally term recognition may be generally useful in developing tactics. So
we mention some alternate approaches here.

4.1 Pattern Terms and General Match Function

Recognition functions can get verbose. Using pattern terms with a general match
function yields more succinct functions, but much slower execution. For example
using a general match function and a pattern the level 2 top abstraction of
"lx y. x <3 /\y > 0"istmatch "!STAR1 STAR2. STAR3 /\ STAR4". The
function tmatch checks each part of the pattern against the corresponding part
of the term. This is used in the implementation for flexibility, but patterns are
converted to functions for speed.

If the terms to be selected contain some particular function somewhere in
them, a search-and-match function could be used. If subtmatch searches for a
matching subterm, subtmatch "1sim(STAR) :num -> bool" t searches t check-
ing for a combination with 1sim as the operator.

4.2 Other AI Techniques

The way we apply rule-version space search misses common subexpressions in
positive examples. Common subexpression location with DAGs, as in compilers
[1], is probably not useful since compilers look for ezact matches. Discrimination
networks [4] may be a means of finding common subexpressions. The common
subexpressions could then be found with a search-and-match function.

The work of Feng and Muggleston [8] may be applicable. They are concerned
with finding selectors which classify positive and negative examples of higher
order terms. The statistical feature selection of Kira and Rendell [11] is another
way of extracting concepts from large numbers of features. This is especially
applicable since the set of potential features is the power set of term nodes.



4.3 Methods of Synthesizing Selection Predicates

The current method uses abstractions from the top down as features for build-
ing the selection function. Other kinds of features may lead to better selection
functions.

Bottom-Up and General Abstraction Rather than starting at the top and
allowing detail downward, details from the bottom of the term’s parse tree up-
ward might be used. A reasonable, informal definition of the level n abstrac-
tion from the bottom may be a parse tree of height n above any leaf node.
Since constants and variables names are rarely good identifiers, all leaf nodes
may be replaced with STAR’s. In contrast to top abstraction in Sect. 3.2 the
level 1 abstractions from the bottom for the term "'!x y.x < 3 /\ y > 0"
are "STAR1 < STAR2" and "STAR3 > STAR4". The level 2 bottom abstraction
is "STAR1 < STAR2 /\ STAR3 > STAR4".

Clearly one could search for and check abstractions found in the middle, too.
For example, another pattern for the above term is "STAR1 /\ STAR2". It is not
clear how features could be chosen efficiently when terms are large. Since there
are O(2") nodes in a term of depth n, the total number of features grows as

0(22").

Maximum Distance An entirely different approach is to define a metric of
distance between terms in some multi-dimensional space. Denotation predicates
would then specify hyperrectangles or separating hyperplanes. The synthesizing
function would choose those predicates which maximize separation between the
positive and negative examples.

5 Examples

5.1 Manufactured Examples

In order to illustrate the operation of find_filter, I present some small, con-
trived examples.

Simplest Suppose the assumption list at some point is

["'x. x /\Ny ==>7y /\ x";
"la. a /\ b"]

The following finds a filter for the first assumption:

find_filter (fst (top_goal())) [1];;
‘let £ = \(t:term).is_forall t & is_imp (body (rand t)) ? false;;
string

If one of the negative examples also has an implication, the match must be
more exact.



find_filter ["!x. x /\ y ==> y /\ x";
"la. a /\ b";
"ix. x ==>d"] [1]1;;
‘let £ = \(t:term).is_forall t & is_imp (body (rand t))
& is_conj (rand (rator (body (rand t)))) 7 false;;

: string
A filter for two very different terms is a conjunction.

find_filter ["!x. x /\ y ==>y /\ x";
"Ix. a /\ b";
"1x. x ==> 4"] [2;3];;
‘let £ = \(t:term).is_forall t & is_conj (body (rand t))
or is_forall t & is_imp (body (rand t))
& vname (rand (rator (body (rand t))))=‘x¢
? false;; ‘: string

Clearly the duplicated test of is_forall t could be done once to shorten and
speed the predicate.

5.2 Examples from Uinta

In this section we show find_filter used with one of biggest, most complex as-
sumption list we could find in a real proof. In the proof of the general interpreter
in Uinta [15], there is a point where a goal has 21 fairly complex assumptions.
To save space, only a few of the assumptions are used and shown here. The
assumptions shown are typical. These assumptions are not shown with enough
type information to be reentered: that would make them even bigger. To get
enough type information, print terms with set_flag(‘show types‘, true).

First Example We begin by synthesizing a selector for one of the most complex
assumptions. The assumption is

"t
(select
gi2
(substate
gi2
(substate gil(s’(Temp_Abs(\t’. sync gil(s’ t’)(e’ t’))t))))
(subenv gi2(subenv gil(e’(Temp_Abs(\t’.
sync gii(s’ t’)(e’ t7))t)))) =
k) /\
sync
gi2
(substate gil(s’(Temp_Abs(\t’. sync gil(s’ t’)(e’ t’))t)))
(subenv gil(e’(Temp_Abs(\t’. sync gil(s’ t’)(e’ t’))t))) ==>
(subout gi2(subout gil(p’(Temp_Abs(\t’.



sync gii(s’ t’)(e’ t’))t))) =

output

gi2

k

(substate
gi2

(substate gil(s’(Temp_Abs(\t’. sync gil(s’ t’)(e’ t’))t))))

(subenv gi2(subenv gil(e’(Temp_Abs(\t’.

sync gil(s’ t’)(e’ t’))t)))))"

When we run find_filter, we get

\t.is_forall t & is_imp (body (rand t)) &
is_conj (rand (rator (body (rand t))))
7 false

The selection function may be informative by itself: it shows that at
level, the structure of the assumption is 'STAR1. STAR2 /\ STAR3

Second Example In this example we use find_filter to find a
two structurally similar assumptions. The assumptions are

"(!s’ e’ p’ k. INST_CORRECT gi2 s’ e’ p’ k) ==>
(!'s’ e’ p’ k. OUTPUT_CORRECT gi2 s’ e’ p’ k) ==>
('s’ e’ p’.
implementation gi2 s’ e’ p’ ==
('t.
sync gi2(s’ t)(e’ t) ==>
(?7n. Next(\t’. sync gi2(s’ t’)(e’ t’))(t,t + n))))"

"(!s’ e’ p’ k. INST_CORRECT gil s’ e’ p’ k) ==>
(!'s’ e’ p’ k. OUTPUT_CORRECT gil s’ e’ p’ k) ==>
('s’ e’ p’.
implementation gil s’ e’ p’ ==>
('t.
sync gii(s’ t)(e’ t) ==>
(?7n. Next(\t’. sync gil(s’ t’)(e’ t’))(t,t + n))))"

an abstract
=> STAR4.

selector for

The selector is simply \t.is_imp t. No other assumptions are implications at

the top.

Third Example The last example finds a filter for one of the simplest assump-

tions:

"implementation gil s’ e’ p’"

There is another similar assumption (shown below), so the filter must be very

specific.



"implementation
gi2
(\x. substate gil(s’(Temp_Abs(\t. sync giil(s’ t)(e’ t))x)))
(\x. subenv giil(e’(Temp_Abs(\t. sync giil(s’ t)(e’ t))x)))
(\x. subout gil(p’(Temp_Abs(\t. sync gii(s’ t)(e’ t))x)))"

\t.cname (rator (rator (rator (rator t))))
vname (rand (rator (rator (rator t))))
? false

‘implementation‘ &
Kgilt

6 Conclusions

Until assumptions can be labeled, filtering the assumption list is the most robust
way to write proof scripts. Having an aid to synthesize filter functions will en-
courage people to use filters instead of denoting assumptions by position. With
a large user group, more experience, and a wider range of styles, more hueristics
can be captured and the filter synthesizer improved. In addition, machine learn-
ing applied to terms may be the basis for other operations or proof functions.
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